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Performance of 3-D Infinite Elements for High-Frequency Electromagnetic
Fields
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The infinite elements for edge based finite-element methods (FEMs) have been shown effective for open boundary problems. In the in-
finite elements, electromagnetic fields are expressed in terms of radially decaying basis functions. On the other hand, the perfect matched
layer has widely been used for FEMs for high-frequency problems. In this paper, numerical performance of both methods is comparably
discussed. The numerical experiments show that the former has higher computational efficiency.

Index Terms—Finite-element method (FEM), high-frequency problem, infinite element, perfect matched layer (PML).

I. INTRODUCTION

IGH-FREQUENCY electromagnetic filed computations

using the finite-difference time-domain (FDTD) method,
finite-element method (FEM), and method of moment (MoM)
have widely been performed [1], [2]. The MoM has an advan-
tage to deal with the infinite region without introducing artificial
open boundaries. However we must solve equations including
a dense matrix for MoM analysis. The FDTD method can ef-
fectively solve large scale problems because it is an explicit
method. If analysis model includes curved surfaces or structures
whose scale is much smaller than the whole scale, the FDTD
method needs a great number of unknowns because it employs
cuboid cells.

FEM can effectively analyze electromagnetic fields in com-
plicated geometries because it can employ the tetrahedron or
hexahedron elements. To solve high-frequency electromagnetic
field problems using FEM, the infinite elements [3]-[6] and per-
fectly matched layer (PML) [7], [8] have been employed to treat
open boundaries. The infinite element has been shown effective
for static, quasi-static [9] and high-frequency electromagnetic
field analysis [10], [11]. The infinite elements have been dis-
cussed for sound and electromagnetic waves in [4] and [5], re-
spectively. Although the formulation in [5] is mathematically
rigorous, the resultant finite element (FE) matrix is asymmetric.
Although the formulation in [4] is valid only for spherical do-
mains, the FE matrix is symmetric. In this study, we consider the
symmetric formulations of the infinite elements presented in [4],
which has been extended to electromagnetic waves in [6]. In the
infinite elements, electromagnetic fields are expressed in terms
of radially decaying basis functions. It has been shown that the
infinite element method results in ill-conditioned FE matrices.
This problem must be overcome to apply the infinite elements to
large scale problems. Moreover the performance of the infinite
elements for high-frequency problems has not been compared
with that of PML.
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In this study, the matrix conditioning for the infinite elements
applied to high-frequency problems is improved by orthogonal-
ization of the basis functions, which has been shown effective
for static fields [9]. The numerical performance of the 3-D infi-
nite elements and PML is comparatively discussed.

This paper will be organized as follows: in Section II, FEM
using the infinite element will be formulated. In Section III, nu-
merical results will be presented which show effectiveness of
the infinite element.

II. FORMULATION

A. Governing Equation

The weak form for high-frequency electromagnetic fields is
given by

/‘ [(bV x A) - (VX W) — W2EA - W]dv
@

+ W><H~nds:/J~de (1)
29 Q

where A, W, H and J denote the vector potential, weighting
vector magnetic field and current density, respectively. More-
over, v,w and € denote the inverse of permeability, driving fre-
quency and complex permittivity. In this study, (1) is solved by
FEM in which the finite domain is descritized with hexahedral
elements while open boundaries are treated by the infinite ele-
ments.

B. Formulation of Infinite Element [6]

Fig. 1 illustrates the infinite element in which unknowns are
assigned to the eight edges. The infinite element is forrmed by
linearly extending the outermost boundary of the finite region
from the reference point X (g, %o, 2o) to the infinite point. The
position vector z in the infinite element can be expressed as

4
z=Xo+t (Z w;(r, 8)T; — XU> )
i=1

where z; is the position vector of the ith node on the outer-
most boundary and w;(r, s) is the interpolation function whose
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Fig. 1. Local coordinate of infinite element.

TABLE I
EXPLICIT FORMS OF w; (7, s)

node number i ax(r, s)
1 (1-r)(1-s)/4
2 (1+r)(1-s)/4
3 (1-r)(1+s)/4
4 (1+r)(1+s)/4

explicit forms are summarized in Table I. The contravariant and
covariant basis vector of the infinite element are given by

4
Jd Jw; (T, 4
A E T 5) (T g)ivi:terl

r = 5 2
¢ or ] dr (2a)
4
oz Ow;(r, s)
==ty T e — te, 2b
¢ Js — Js * €1 (2b)
ox *
e = Tl Zwi(r, s)x; = e (20)
’ i=1
. es X €t €s1 X €1 el
=Vr= = = — 3
e r N T S (3a)
s €y X e, €1 X €p1 Ci
=Vs= = = — 3b
e 5 7 v ; (3b)
t €, X €4 €r1 X €41 65
e = Vt = = = — 3
¢ V9 /91 i )

where /g is the Jacobian and the suffix “1” denotes the values
on the quadrilateral {1, 2, 3,4} where ¢+ = 1. The metric tensors
are defined by ¢;; = e; - €; and g/ = €' - €. It is assumed that
the outermost boundary is a sphere whose center is at X so that
the coordinates are orthogonal, i.e.,

gij1 = €1 -e;1 =0, i # j. “4)

The vector potential A in the infinite element is approximated
using the vector interpolation function N as follows:

N

A= Z > arNy (5)

n=1e=1
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TABLE 11
EXPLICIT FORMS OF (10) AND (11)

edge numbere  fi(r, s) gdr, s) edge number e afr, s)
1 (1-s)/4 0 5 (1-r)(1-s)/4
2 (1+s)/4 0 6 (1+r)(1-s)/4
3 0 (1-r)/4 7 (1-r)(1+s)/4
4 0 (1+r)/4 8 (1+r)(1+s)/4

where N is the expansion order of infinite element. The vector
interpolation function N is given by

N} = T,,,(t)efjk\/m(t*l) [fe(r,s)e" + ge(r,5)e’] (1 < e < 4)

nlt) o _
=Y ( )c Jh/ge(t=1) [fe(r,s)el + go(r,s)ef] (1 < e < 4)

t
n t —ik —
= TT()e Va0 (1, 5)(1 < e < 4) (6)
N7 = ¢, (1)e*FVTE=D g, (1 6)e! (5 < e < 8)
= pp(t)e HFVIU-DY (5 < e < 8) (7

where k is the wavenumber and g;; = e; - e; is approximately
equal to the radius of the spherical domain. Equations (6) and (7)
show in-plane and out-of-plane components of N, . The explicit
forms of f.(r, s), g.(r, s) and w.(r, s) are shown in Table IL
The functions 7, and ¢,, are defined by

1 1

T, = quﬁn = Im(n:l.ﬂ,...N).

(®)
In this study, 79 and ¢ are determined to approximate the far

field radiation pattern of the high-frequency electromagnetic
waves. The rotation of N, is given by

V x NT = 1'yne‘jk\/gT(t‘l)'u,,
€ t €

+ %e*jkm(t*”ue(l <e<d) (9
, On ik .
VXN =Te Vet (5<e<8)  (10)
where
1 .
Ue(Ta S) = 7 [_.QE(T)G’I'l + fc(s)csl]ﬂ (113)
1
1 (gl dAs)
Ue(r, 8) = 7 [ & ds | &V (11b)
1 [Owe(r,s) Awe(r, 8)
w.(r,s) = 7 [ 9s Gl T T
(11c)
J - -
’Yn(t) = & (Tvle ikt 1)) - (11d)

When the weighting function W in (1) is assumed to be the
interpolation function N, the local FE matrix corresponding to
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the first term of L.H.S in (1) is given by

e,e

O
, T, T, .
K" = (e, ver) / —';2 N N R
J1

OO

+ (Ve ver) /

J1

Yin PYneiij\/gT(ti L dt

(12a)
K:?é'n = (v, we) /x Yo I2RVEE D) 4

1 (12b)
K™ = (we,we) /3C By TIZEVIE1)

o (12¢)

Equations (12a), (12b), and (12c¢) include the inner products of
two in-plane, in-plane and out-of-plane, and two out-of-plane
components. In (12), the inner products among #.,v. and w,
vanish due to the orthogonality (4) in the basis vectors. The local
FE matrix corresponding to the second term of L.H.S in (1) is
given by

e.e’

M = (Ue,Ue:)/ TnTne 2FVIUaE (132)
J1
MI = (U, Vo) / Frmpne 2VIEED g (13b)

e’,
1
'S

M = (Ve Vo) / 2 ppe HVIED Ay,

J1
(13c)

It is assumed that

ar = / e IZRVIE-D gt = o TIRVIUE, (~12k\/Ger)
J1

(14a)
oc —J2ky/gtE(t—1) 1 .
o = / ﬁdt = —ﬁ(—l + 2jk/Grrey—1)
) , _
(14b)

where E; is the exponential integral [12] and « is the divergent
integral. It can be found that the divergent integrals in (12a) and
(13a) cancel out with the boundary term in (1).

C. Orthogonalization

In this study, we orthogonalize the first term in (11a) in order
to improve the matrix conditioning. For simplicity, we express
the integral in (12a) as

o0
TnT ot (4
dn.m :/ R m() i2k/Gec(t 1)dt
1

$2
(n,m=0,1,2,...N). (15)
The gram matrix is given by
go.0 go,N
G = (16)
gn,0 gN,N

The eigenvectors of G are arranged as column vectors in the
matrix W. The gram matrix G is now orthogonalized as follows:

G = WIGW. (17)
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Fig. 2. Convergence history.

TABLE III
PERFORMANCE OF INFINITE ELEMENT AND PML

iteration number error (%) CPU time
IE(n=2) 1160 222 402.05
IE(n=3) 1389 0.87 569.49
PML 2986 0.95 2249.1

III. NUMERICAL RESULTS

A. Loop Antenna

The electromagnetic fields around the rectangular loop an-
tenna, 1 m per side, are computed by FEM using the infinite el-
ement and PML. The computational domain is a sphere whose
radius is 2 m. The amplitude and frequency of driving current
are 1 AT and 75 MHz, respectively. The thickness and conduc-
tivity of PML are set to 1 m and 0.00179 S/m so that the reflec-
tion from PML and iteration number of ICCG are minimized.
Table III summarizes the iteration number of the ICCG method
which solves the FE equation, errors in the magnetic field and
CPU time of FEM using the infinite element and PML. The error
is defined as follow:

(18)

where B; and B,; are magnetic flux densities obtained by the
FEM and analytical solution in ¢th element. It is observed that
the magnetic fields obtained by the present method and PML
are in good agreement with the analytical solution. When the
order of series expansion of the infinite element increases, the
error decreases and iteration number increases. The results in
Table III lead to the conclusion that the infinite element has
higher computational efficiency in comparison with PML. Fig. 2
shows the residual histories of the ICCG method. It can be seen
that the infinite element with #» = 2 has poor convergence if the
orthogonalization is not carried out.

B. Half-Wave Dipole Antenna

The electromagnetic fields around the half-wave dipole
antenna are computed by FEM using the infinite element and
PML. The parameters of the FEM are the same as those used
in Section III-A. The electric field distributions obtained by
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Fig. 3. Electric field computed by FEM using the infinite element in the finite
region. (a) Infinite element (b) PML.

TABLE IV
PERFORMANCE OF INFINITE ELEMENT AND PML

iteration number CPU time
IE(n=2) 2136 997.32
IE(n=3) 2244 1147.23
PML 4646 5076.37
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Fig.4. Magnetic field computed by FEM using the infinite element withn = 3.
The rectangle area is the cross section of the magnetic material.

FEM with the infinite element and PML are shown in Fig. 3.
Both distributions seem almost identical. Table IV summarizes
the iteration number of the ICCG method which solves the
FE equation and CPU time of FEM using the infinite element
and PML. The results in Table III lead to the conclusion that
the infinite element has higher computational efficiency in
comparison with PML.
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C. Scattering Problem

The electromagnetic field around a brick-shaped magnetic
material of 1, = 10, placed near the loop antenna mentioned
in Section III-A, is computed using the present method. The
driving frequency is set to 100 MHz. The FEM parameters are
the same as those used in Section III-A. The resultant magnetic
field distribution is shown in Fig. 4, which is found to be almost
identical with that obtained by the FEM with PML.

IV. CONCLUSION

In this work, effectiveness of the infinite elements applied to
wave problems has been discussed. The electromagnetic fields
around the loop and half-wave dipole antennas are computed by
FEM using the infinite element and PML. The results using the
infinite element have good computational efficiency in compar-
ison with PML. One of the drawbacks in the present method is
that the domain boundary must be spherical. If the domain is not
spherical, the formulation includes divergent integrals. In future
work, we would resolve this problem.
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