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Traveling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city
and returns to the origin city? (WiKi)
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TSP for cities on concentric circles
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Complexity of TSP
Number of combinations to visit n cities is found to be

C—1 1)!
—E(Tl— )

The value of n! can be estimated by the Stirling approximation.
For example, when n = 30, C is estimated to be

logio n! = n(logion —logype)
= n(log;on — 0.43) = 30

Core i7(10° Mips) executes an instruction for 10-12 sec.
Thus, roughly speaking, 1018 sec = 10° years (1L0{E %)
lasts for 103° computations, that is, 30 city-problem.
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Shape Optimization

4 N
~ Parameter Optimization Topology Optimization

-Unknowns: design parameters -Shape is free deformed. Holes can
a, a, be generated or annihilated.
<>

gl » &

- Parameter design is necessary. -No parameter design
-Sound approach but little novelty -Novel design might be obtained.
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Example of Topology Optimization

The present method is applied to magnetic shield model shown below.

The purpose of this optimization is to minimize the flux density in the target
region and core volume in the design region.

... y[mm]
Bl Optimization Problem | ¢+
|B|average S nNy
F(¢):WM = T —> Min. Y
10 Sdesign Coil
200 o 100[A - turn]
W,, : weighting coefficient 180
S : core volume 140
Sdesign : volume of the design E@M%M .
reg ion region
B: flux density of in the target 20
region Target
region
5

20 140 € g0
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Global search
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Local search

@ ™
<~ Voxel Viewer - e T [ [ 5 [
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Y. Hidaka, T. Sato, H. Igarashi, "Topology Optimization Method Based on On-Off Method
and Level Set Approach," IEEE Transactions on Magnetics, Volume:50, Issue:2, Article#7015204, 2014.
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Methods for Topology Optimization
Methods Optimization Features
Level set |
evelse : © Small comp. cost

Sensitivity (@ Derivative computation
analysis

Density I@ Local search

ON/OFF ﬁﬂ & Large computing cost
Stochastic © No derivative comp.

Basis function A algorithm, =
e.. GA © Global search

P = D WnGn(x)
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» The microwave energy-harvesting device is composed of a receiving
antenna and RF energy harvesting circuit.

Receiving antenna

DC power AC power

- <7 Microwave
< 1 Rectifying Matching
9 circuit circuit

\ )
Y

RF energy harvesting circuit

Microwave energy-harvesting device
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» We optimize the shape of receiving antenna and circuit parameters
using optimization algorithm based on evolution technique.

E<0.2 [V/m] [1]

» We consider harvesting energy from
microwave transmitted by wireless
rooter.

2.45GHz, 5.6GHz  WiFi

» The measured electric field intensity of
2.45GHz microwave Is about 0.2V/m.

100~800MHz

[1] Y. Kawahara, et al., “Power Harvesting from Microwavr Oven
Electromagnetic Leakage”, Proc. The 2013 ACM international Joint 700|\/| HZ ~ 2 . SG HZ Smartphone
Conference on Pervasive and Ubiquitous Computing, pp. 373-382, 2013. 4



NGnet on/off method

Gaussian functions are uniformly deployed so that the design region is
covered by the support of the Gaussians.
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NGnet on/off method

Gaussian functions in the design region are normalized.
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NGnet on/off method

To determine the material attribute in the design region, we use the output of
the shape function y(x).

N
y() = ) wiby(®)
i=1

Material attribute
{ferrite (ON) y(x) =0
M, =

air (OFF) y(x) <0

- ferrite 13

Design region

-air

HOKKAIDO
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The Gaussian functions are uniformly deployed in the unit region
whose direction is represented by “F”.

24 mm

= Shape function
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The single antenna consists of four unit regions with €, symmetry.

The array antenna consists of four 4 X 4 unit regions with C, symmetry.

Unit region
nit region

ww Qg

100 mm

100 mm

4 | T

(a) single
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Optimization Problem

The actual gain is maximized in the frequency period
(1.5GHz, 3.5GHz).

f
' Gactual ( f )df

< Gaepual >= 0 — —> max
1~ zk(f)=z.|"
G (f):—z:G- (f)1—|=2 c
actual 4 L iSO Z;(f )—I— Zc

impedance matching

G.cuq - @ctual gain

G, : absolute gain

Z, . input impedance of antenna

Z. =50 Q) : input impedance of circuit
f, = 1.5 GHz

f, =3.5GHz
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Optimal Shapes

100 mm

100 mm
100 mm

(a) single (b) array
(Gactuar) = 5.6 dBi (Gactuar) = 9.2 dBi

T. Mori, H. Igarashi, Topology optimization of wideband array antenna for microwave energy harvester,
International Journal of Applied Electromagnetics and Mechanics, vol. 52, no. 1-2, pp. 631-639, 2016.
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ptimization result
55
;=

14

Gactual [d BI]

Single

ey, —Array

1.5 2 2.5 3 3.5
Frequency[GHZz]
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Computed and measured input impedance

100mm . 24mm
H
o
o
=
3
Computed
,/250\ - -real - -image 90 )
\ Measured 70
150 ‘\ —real image 50
50 \
) ) ~ p L Frequency [GHz]
15 27~ 2577 3 10 v/ \
50 4 | / B\e o =~
ot Frequency [GHz] 15 2 o 3
L7 -30 Measured Computed
-150 =7 50 —real image - -real - -image

(a) single (b) array
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Realization of optimized antenna
100mm DC+

100mm

(b) back face with circuit

(a) front face

Manufactured Array Antenna
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Measurement of output voltage

Transmitting
antenna
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2.5
—Array Single
2
2.
>c>1.5
E=<0.1[V/m
1 [V/m]
0.5 2.45GHz
0 L=
0 2 4 6 8 10

Output Voltage V,,, (measured)

WiFi

E [V/m]
12
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Voltage generated by harvester

V

1.6
1.2
0.8
0.4

0
-0.4

0

01 02 03 04 0.5

Dy, = 15cm

1.6
1.2
0.8
0.4
0
-0.4

V

[N N

0

01 02 03 04 0.5

Dy, = 30cm
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From Hybrid Vehicle (HV) to
Zero Emission Vehicle (ZEV)

For manufacturers with annual sales greater than 60,000 vehicles,
at least 14% of the vehicles they produce and deliver for sale in
California must meet ZEV requirements for 2015 through 2017.



Optimization of Wireless Power Transfer

» Wireless power transfer (WPT) for EVs is expected to expand rapidly.

WPT system for EVs

Y. Otomo, Y. Gong, H. Igarashi, 3-D Topology Optimization of Magnetic Cores
for Wireless Power Transfer with Double-Sided Shielding Coils, presented at OIPE2018,
submitted to Int. J. AEM.
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Optimization problem

/— Optimization problem N
Np
1 p
maxF(w), FWw)=— > k;(w), sub.toy <—
w Np 2 2
1=1
I ~coupling coefficient of _ total volume of _ volume of
(W) the i-th misalignment M the magnetic core D " the design regionj

Receiving coil

Design region

/ Three different misalignments

)

Transmitting coil Omm

150 mm

/‘QJ\V\ EXM

Eereratdliteettion .
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Optimized and conventional core shapes

0 : T
With misalignment % Without misalignment




Coupling coefficient of each WPT core

» We can see that the optimized WPT cores have the good tolerance
In the forward misalignment and air gap.

0.4

03 £ - <.

(a) with misalignment

1

Loy

Coupling coefficient
o
N

-o-Optimized (misalignment)
-©-Optimized (without misalignment)
-A-Bar shaped

-a-H-shaped
0.0 . .
0 100 200 300
Misalignment in x-axis (mm) ®

(b) without misalignment

HOKKAIDO
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Optimization of
Interior Permanent Magnet (IPM) Motor

Design region
Permanent Magnet

Unit:[mm]

coil

56.0

28.0
21.5

Ly \
AR I.ﬂ
NEK ! ‘.“I (

! NS A
B e A XXX/

Gaussian Function
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Initial individuals generated in the GA process
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Optimization of Realistic IPM Motor

Maximization of torque and minimization of ripple

F=-Toe/To +0.5T,, /T, — minimize,

Tve:average torque, T, :torque ripple
T,=10.8Nm, T,=8.5%:normalization constants

stator core

rotor core
shaft

magnets
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Optimization result

——Optimization --- Original
114

11.2

11
10.8
10.6
10.4

10.2
0 20 40 60
electric angle (deg)

Torque (Nm)

Torque ripple is greatly

! reduced by the optimization.

=0.96T,, T,,=0.25T,

ave
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Realization of Optimized IPM Motor

Manufactured rotor
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Experimental results

It is found from the measurement that
the torque ripple is suppressed while
the average torque is kept almost unchanged.

Tmax - Tmin

7rip —
1 average

= Optimization —>—-Original 2 —8—Optimization ~ --<- Original
20

~ 15

X

< 10

& sl
= 5 EM

0 10 20 30 40 50

Trip (%)

0 10 20 30 40 50
current phase angle (deg) current phase angle (deg)
(a) Computed (b) Measured

‘EEEE A+HE—, b, MROD—&iE{b(C KA IE A A REAT—2D RIEF IR &EE L,
BERFLHEED, Vol. 135, No. 4, 291,-298, 2015
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Real-coded Genetic Algorithm (with REX)

@ Parents

~ 10 X DoFs

n. = 2 X DoFs

Npop
_ Evaluation &
Population Selection

Children

Finite element analysis has to be performed for 2 x DoFs times a generation.
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Surrogate Models ({XEETJL )

Methods

Features

Response surface

(Wi & B EE)
Kiriging

@ They do not work well
for high-dimensional
Problems.
BHRENKESGLE
[FFEEZEL

Neural network

@ Feature engineering
IS necessary.
HEEDERNDLE

lution

Deep Learning HJ

© Feature is automatically
obtained.

RHEEDERNTE
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*kk

GooglLeNet

Convolutional neural network developed by Google.
This outperforms the conventional machine learning methods.
Classifier(53%82%)

The IPM motors with different shapes are classified with respect to
the average torque T, and torque ripple T;;,.

Input:

image of motor Classifier Output
Tave
Trin

GooglLenet *

*Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015.
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Convolutional Neural Network (CNN)

Filter layers

4
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Deep Learning for Image Recognition

class

dog

wolf
CNN [>
fox

O L
R

[
f
- W
Emew e b

LS

Internet
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Deep Learning for Topology Optimization

CNN

Topology optimization

5)

Torque Class
A+
A
A-

Possibility in
FE analysis
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Generation of Data for DL with Topology Opt.

Training phase Optimization phase

N
Training of CNN with the result [> Optimization for different problems
for optimization problem A. B, C, D... with CNN.

for optimization with small individuals with CNN.

™ Y :
Training of CNN with the result [> Optimization with large number of}
number of individuals.

Training of CNN. Optimization [> Optimization with CNN for wide
problems are generated for class of motors and problems.
generalization of CNN. <]

Because the classification done by CNN is not perfect, posterior FE analysis
IS necessary for accurate evaluation. FE analysis is performed at high
possibility for individuals in good classes.
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Optimization of IPM motor

Design region
Permanent Magnet

Unit:[mm]
O)
o
\ O _ © coil
T9=2.08 Nm
0 —
T fip = 0.57 § g

Current phase angle [degree] 30

Current effective value [A] 4.2425 | @ il ) - : :
" 80 Gaussian Function
Number of turns [turn] 35
Residual flux density [T] 1.25

[4] Technical report of the institute of electrical engineering of Japan,” Industry application society, No. 776, 2000.
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Optimization Problem

T

F =— — max. Sub.to. N <2
T 0 area

T: Average torque

TO: Average torque of original model

N, The number of separated rotor cores

Optimization setting
The number of genes 42

The number of individuals 800

The number of children 160
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Training of CNN for
classification of torque and torgque ripple

CNN
J J Torque 8 classes
Classifier
- N 4,000

Bit map showing material distribution
(224 x 224)

CNN
J J Torque Ripple 8 classes
- ") Classifier

Bit map showing material distributionj'o’OOO
(224 x 224)

W:lron M:Permanent magnetic M: Copper L: Air

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted
to IEEE Trans. Magn.
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Classification of torque and torque ripple

Classification of

Torque
CNN FEM
1.1 1.05~

1.0 0.95~1.05

0.9 0.85~0.95

0.8 0.75~0.85

0.7 0.65~0.75

0.6 0.55~0.65

0.5 0.45~0.55

0.0 ~0.45

better

worse

Classification of
Ripple

CNN FEM

0.6 ~0.65

0.7 0.65~0.75

0.8 0.75~0.85

0.9 0.85~0.95

1.0 0.95~1.05

1.1 1.05~1.15

1.2 1.15~1.25

1.3 1.25~
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Accuracy In torque

Label by CNN  Tayeom
0O |05|06|07|08[09| 1 |11 |TOTAL
0 46 | 10| 6 | 2| 7] 0] 0 584
Wl o5 | s 1o oo o] am
; 0.6 0 | 83 felepll 79 | 0 | o | 0 | O 554
H 0.7 0| 1 |73 WEEM 39| 1 | 0| O 576
§‘ 0.8 0| 0| 0| 3 29 | 0| O 438
% 0.9 0| 0| O | 6 | 40 N 28 | © 537
1 0| O 0 | 0 | 21 [elrl| 26 415
1.1 0| 0| 0| 0] 0] 0| 10 fek 405
TOTAL| 531 | 527 | 550 | 586 | 458 | 521 | 406 | 421 | 4000

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted
to IEEE Trans. Magn.
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Examples

CNN: 0.50 FEM: 0.50 CNN: 0.90 FEM: 0.90

CNN: 0.70 FEM: 0.70 CNN: 1.10 FEM: 1.09
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Torque ripple
Label by CNN Tuipow

06070809 1 |11]|12]|13|TOTAL

0.6 o8 246 | 36 | 1 | 11 | 10 | 12 | 19 | 1132

: | 07 | 169 | 164 | 99 | 20 | 33 | 21 | 29 | 1166
% 08 || 21 | 200 LW 128 | 37 | 24 | 16 | 18 | 1302
H 0.9 7 | 114 | 139 [ 122 | 136 | 41 | 12 | 1383
) 1 8 | 27 | 44 | 148 [ 125 | 61 | 15 | 1249
S| 11 | 5 | 36| 20| 115] 108 M 250 | 27 | 1420
[ 12 9 | 20 | 37 | 38 | 64 | 295 107 | 1145
13 | 21| 19 | 32 | 26 | 33 | 36 | 240 AN 1203
TOTAL [ 1037 | 1293 | 1339 | 1367 | 1216 | 1509 | 1216 | 1023 | 10000

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted
to IEEE Trans. Magn.
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Torque ripple

Relationship between evaluation value by CNN and FEM

Label by CNN 7w
06|07 08 09| 1 [11]12]13][TOTAL
0.6 246 36 | 1 | 11 | 10 | 12 1132

i | 07 | 169 [ 9 | 20 |33 | 21 [ 29 | 1166
E 08 | 21 37 | 24| 16 | 18| 1302
L 0.9 7 | 114 136 | 41 | 12 | 1383
2l 1 8 | 27| 4 61 | 15 | 1249
% 11 | 5 [ 3| 29 | 115 27 | 1420

12 [ 9 2|37 3] es 1145

13 21 19 | 32 | 26 | 33 | 36
TOTAL| 1037 | 1293 | 1339 | 1367 | 1216 | 1509

1216 | 1023




gy-Optimization Based on Deep Learning 5?2

Coevolution In biology

Wiki: In biology, coevolution occurs when two or
more species reciprocally affect each other's evolution.



https://en.wikipedia.org/wiki/Species
https://en.wikipedia.org/wiki/Evolution
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Toward Coevolution of DL and TO

Fitness evaluation

Y

Training of CNN Topology optimization
with richer data with faster speed

_

Training data
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Building a Strong Classifier with DL

data

CNN A; Top_olpgy_
optimization

accuracy Q @ problem

Generator of
Optimization Problem
For generalization of CNN
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Conclusions

Topology optimization leads to new design to various electric and
electronic apparatus as well as other mechanical and chemical
Systems.

Deep learning is promising to reduce the computational cost of
Topology optimization.

Topology optimization and deep learning can make coevolution.
Using the topology optimization, we would be able to realize

a strong classifier with generality of electric motors as well as
other devices.
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