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Traveling Salesman Problem (TSP)

𝐿𝐿1 = 4 𝐿𝐿2 = 2 + 2<

Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city
and returns to the origin city? (WiKi)
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TSP for cities on concentric circles

a
b

𝑟𝑟 =
𝑏𝑏
𝑎𝑎
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Complexity of TSP

Number of combinations to visit 𝑛𝑛 cities is found to be

𝐶𝐶 =
1
2
𝑛𝑛 − 1 !

The value of 𝑛𝑛! can be estimated by the Stirling approximation.
For example, when 𝑛𝑛 = 30,𝐶𝐶 is estimated to be

log10 𝑛𝑛! ≈ 𝑛𝑛(log10 𝑛𝑛 − log10 𝑒𝑒)
= 𝑛𝑛 log10 𝑛𝑛 − 0.43 ≈ 30

Core i7(106 Mips) executes an instruction for 10-12 sec.
Thus, roughly speaking, 1018 sec = 109 years (10億年)
lasts for 1030  computations, that is, 30 city-problem.
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・Unknowns: design parameters

・Parameter design is necessary.
・Sound approach but little novelty

Parameter Optimization
・Shape is free deformed. Holes can
be generated or annihilated.

・No parameter design
・Novel design might be obtained.

Topology Optimization

a1

a3a2

a4
a3

a2

a4

a1

Shape Optimization
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Example of Topology Optimization
 The present method is applied to magnetic shield model shown below.
 The purpose of this optimization is to minimize the flux density in the target 

region and core volume in the design region.

WM : weighting coefficient
S : core volume
Sdesign : volume of the design    

region
B: flux density of in the target 
region

( )
design

average
M S

SWF +=
−510

B
φ

■Optimization Problem

Min.

Target
region
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Global search
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Local search

Y. Hidaka, T. Sato, H. Igarashi, "Topology Optimization Method Based on On–Off Method 
and Level Set Approach," IEEE Transactions on Magnetics, Volume:50, Issue:2, Article#7015204, 2014.
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Methods for Topology Optimization

Level set

Methods

Density

Basis function

Optimization

Sensitivity
analysis

Stochastic
algorithm,
e.g. GA

Features

Small comp. cost

Derivative computation

Local search

Large computing cost

No derivative comp.

Global search
𝜓𝜓 𝒙𝒙 = �

𝑛𝑛

𝑤𝑤𝑛𝑛𝐺𝐺𝑛𝑛(𝒙𝒙)

ON/OFF
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Receiving antenna

Rectifying 
circuit

Matching 
circuitL

oa
d

Microwave energy-harvesting device

 The microwave energy-harvesting device is composed of a receiving 
antenna and RF energy harvesting circuit.

Microwave

RF energy harvesting circuit

AC powerDC power

3
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TV

Smartphone

WiFi

100～800MHz

700MHz～2.5GHz

2.45GHz, 5.6GHz

 We optimize the shape of receiving antenna and circuit parameters
using optimization algorithm based on evolution technique.  

4

 The measured electric field intensity of 
2.45GHz microwave is about 0.2V/m.

E≦0.2 [V/m] [1]

[1] Y. Kawahara, et al., “Power Harvesting from Microwavr Oven 
Electromagnetic Leakage”, Proc. The 2013 ACM international Joint 
Conference on Pervasive and Ubiquitous Computing, pp. 373-382, 2013.

 We consider harvesting energy from 
microwave transmitted by wireless 
rooter.
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NGnet on/off method

11

Gaussian functions are uniformly deployed so that the design region is 
covered by the support of the Gaussians.

Design region

𝐺𝐺1 𝒙𝒙
𝐺𝐺4 𝒙𝒙

𝐺𝐺1 𝒙𝒙𝐺𝐺4 𝒙𝒙
𝐺𝐺𝑖𝑖 𝒙𝒙 =

1

2𝜋𝜋𝜋𝜋
3
2

exp −
1

2𝜎𝜎2
𝒙𝒙 − 𝒙𝒙𝑖𝑖 2

𝜎𝜎

𝜎𝜎 :standard deviation

Gaussian function
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NGnet on/off method

12

Gaussian functions in the design region are normalized.

Design region

𝑏𝑏1 𝒙𝒙𝑏𝑏4 𝒙𝒙

𝑏𝑏10 𝒙𝒙

𝑏𝑏4 𝒙𝒙 𝑏𝑏1 𝒙𝒙

Normalization

𝑏𝑏10 𝒙𝒙

𝑏𝑏𝑖𝑖 𝒙𝒙 = �𝐺𝐺𝑖𝑖 𝒙𝒙 �
𝑗𝑗=1

𝑁𝑁

𝐺𝐺𝑗𝑗 𝒙𝒙
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NGnet on/off method
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To determine the material attribute in the design region, we use the output of   
the shape function 𝑦𝑦 𝒙𝒙 .

Design region

𝑤𝑤1𝑏𝑏1𝑤𝑤4𝑏𝑏4

ON

OFF

𝑀𝑀𝑒𝑒 = �ferrite (ON) 𝑦𝑦 𝒙𝒙 ≥ 0
air (OFF) 𝑦𝑦 𝒙𝒙 < 0

𝑦𝑦 𝒙𝒙

Material attribute

:air :ferrite

𝑦𝑦 𝒙𝒙 = �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖 𝒙𝒙
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Unit region 

Contour of
Gaussian function

F

Distribution of 
Gaussian functions

24 mm

24
 m

m

N=81

Shape function

14

The Gaussian functions are uniformly deployed in the unit region
whose direction is represented by “F”.

𝑦𝑦 𝒙𝒙 = �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖𝑏𝑏𝑖𝑖(𝒙𝒙)
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FF

F F

FF

F F

FF

F F

FF

F F

Unit region
100 mm

10
0 

m
m

24 m
m

(b) array

FF
F F

100 mm

10
0 

m
m

50 m
m

(a) single

Unit region

15

The single antenna consists of four unit regions with 𝐶𝐶4 symmetry.

The array antenna consists of four 4 × 4 unit regions with 𝐶𝐶4 symmetry.



Topology Optimization Based on Deep Learning

Optimization Problem

( )
max

01

actual
1

0 →
−

>=<
∫

ff

fdfG
G

f

f
actual

( ) ( ) ( )
( )∑

= 













+
−

−=
4

1

2

ca

ca
isoactual 1

4
1

k
k

k

ZfZ
ZfZfGfG

Gactual : actual gain
Giso : absolute gain
Za : input impedance of antenna
Zc = 50 Ω : input impedance of circuit
f0  = 1.5 GHz
f1  = 3.5 GHz

The actual gain is maximized in the frequency period
(1.5GHz, 3.5GHz).

16

impedance matching
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Optimal Shapes

(b) array

100 mm

10
0 

m
m

(a) single

100 mm

10
0 

m
m

𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 5.6 dBi 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 9.2 dBi

17

T. Mori, H. Igarashi, Topology optimization of wideband array antenna for microwave energy harvester,
International Journal of Applied Electromagnetics and Mechanics, vol. 52, no. 1-2, pp. 631-639, 2016.
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Realization of optimized antenna

Manufactured Array Antenna

(a) front face

10
0m

m

100mm

(b) back face with circuit
DC-

DC+

15 mm

20
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Measurement of output voltage 

Rectenna

Transmitting 
antenna50 cm

Oscilloscope

Wave absorber

21
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0
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Array Single
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Output Voltage Vout (measured)

V
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t
[V

]
22

WiFi2.45GHz

E≦0.1 [V/m]



Topology Optimization Based on Deep Learning

Operation test: RF harvester located near WiFi router

RF Harvester

WiFi router

𝐷𝐷𝑤𝑤

23



Topology Optimization Based on Deep Learning 24

Voltage generated by harvester

sec sec

VV

𝐷𝐷𝑊𝑊 = 15cm 𝐷𝐷𝑊𝑊 = 30cm
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From Hybrid Vehicle (HV) to
Zero Emission Vehicle (ZEV)

For manufacturers with annual sales greater than 60,000 vehicles, 
at least 14% of the vehicles they produce and deliver for sale in
California must meet ZEV requirements for 2015 through 2017.
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Optimization of Wireless Power Transfer

26

 Wireless power transfer (WPT) for EVs is expected to expand rapidly.

WPT system for EVs

Y. Otomo, Y. Gong, H. Igarashi, 3-D Topology Optimization of Magnetic Cores
for Wireless Power Transfer with Double-Sided Shielding Coils, presented at OIPE2018,
submitted to Int. J. AEM.
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Optimization problem

27

max
𝒘𝒘

𝐹𝐹 𝒘𝒘 , 𝐹𝐹 𝒘𝒘 =
1
𝑁𝑁P

�
𝑖𝑖=1

𝑁𝑁p

𝑘𝑘𝑖𝑖 𝒘𝒘 , sub. to 𝛺𝛺M ≤
𝛺𝛺D
2

Optimization problem

𝑘𝑘𝑖𝑖 𝒘𝒘 : coupling coefficient of
the 𝑖𝑖-th misalignment 𝛺𝛺M : total volume of

the magnetic core 𝛺𝛺D : volume of
the design region

Receiving coil

Transmitting coil

x

z

y

Design regionDesign region

Forward directionLateral direction

0 mm

150 mm

300 mm

Three different misalignments
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Optimized and conventional core shapes

28

With misalignment Without misalignment

x

z

y

Bar shaped H-shaped
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Coupling coefficient of each WPT core

29
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Optimized (misalignment)
Optimized (without misalignment)
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 We can see that the optimized WPT cores have the good tolerance 
in the forward misalignment and air gap.
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(a) with misalignment

(b) without misalignment
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56
.0

28
.0

27
.5

8.0

u+

v-

v-

w+
w+

u-

Unit:[mm]

coil

Permanent Magnet

Gaussian Function

Design region

Optimization of 
Interior Permanent Magnet (IPM) Motor



Topology Optimization Based on Deep Learning 31

Initial individuals generated in the GA process
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Optimization of Realistic IPM Motor

 

shaft 

+U +U 

+U 

-U 
-U 

-U 

-V 
-V 

-V 

+V +V 
+V 

+W 

+W 
+W 

-W -W 
-W 

rotor core 

stator core 

magnets 

Maximization of torque and minimization of ripple

Tave：average torque, Trp：torque ripple
T0=10.8Nm，T1=8.5%：normalization constants

minimize,5.0 1rp0 →+−= TTTTF ave
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Optimization result

 

 

Tave=0.96T0, Trp=0.25T1
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m
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Optimization Original

Torque ripple is greatly
reduced by the optimization.
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Realization of Optimized IPM Motor

Manufactured rotor
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0
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Optimization Original
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Optimization Original

Experimental results

(a) Computed (b) Measured

It is found from the measurement that
the torque ripple is suppressed while
the average torque is kept almost unchanged.

𝑇𝑇 𝑟𝑟
𝑟𝑟𝑟𝑟

(%
)

𝑇𝑇 𝑟𝑟
𝑟𝑟𝑟𝑟

(%
)

佐藤孝洋，五十嵐一，他，トポロジー最適化による埋込磁石同期モータの回転子形状最適化，
電気学会論文誌D，Vol. 135，No. 4，291,-298, 2015

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
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𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 10 × DoFs

𝑛𝑛𝑝𝑝 ≈ DoFs + 1

𝑛𝑛𝑐𝑐 ≈ 2 × DoFs
Evaluation &
SelectionPopulation

Parents

Children

𝑛𝑛𝑝𝑝

Real-coded Genetic Algorithm (with REX)

Finite element analysis has to be performed for 2 × DoFs times a generation.
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Surrogate Models (代理モデル )

Response surface
(応答曲面法)

Methods

Kiriging

Deep Learning

Features

They do not work well
for high-dimensional
Problems.
自由度が大きくなると
ほぼ使えない

Feature is automatically
obtained.
特徴量の定義が不要

Neural network
Feature engineering
is necessary.
特徴量の定義が必要
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𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

GoogLeNet***
Convolutional neural network developed by Google.
This outperforms the conventional machine learning methods.

GoogLenet *

*Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the 
IEEE conference on computer vision and pattern recognition. 2015.

Classifier(分類器)

Input:
image of motor OutputClassifier

The IPM motors with different shapes are classified with respect to
the average torque 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 and torque ripple 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟.
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Filter layers

𝐶𝐶1 𝑃𝑃1 𝐶𝐶2
⋯

𝑥𝑥𝑖𝑖𝑖𝑖 = �
𝑝𝑝,𝑞𝑞

𝑦𝑦𝑖𝑖+𝑝𝑝,𝑗𝑗+𝑞𝑞ℎ𝑝𝑝𝑝𝑝 + 𝑏𝑏 𝑥𝑥𝑖𝑖𝑖𝑖 = max
𝑝𝑝,𝑞𝑞∈𝑃𝑃𝑖𝑖𝑖𝑖

𝑦𝑦𝑝𝑝𝑝𝑝

ℎ𝑝𝑝𝑝𝑝

Convolutional Neural Network (CNN)
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class
dog
wolf
fox
⋮

CNN

Deep Learning for Image Recognition

Internet
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Torque Class
A+
A
A-
⋮
F

CNN

Deep Learning for Topology Optimization

Possibility in
FE analysis

Topology optimization
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Generation of Data for DL with Topology Opt.

Because the classification done by CNN is not perfect, posterior FE analysis 
is necessary for accurate evaluation. FE analysis is performed at high
possibility for individuals in good classes.

Training of CNN with the result
for optimization problem A.

Optimization for different problems
B, C, D… with CNN.

Training of CNN with the result
for optimization with small
number of individuals.

Optimization with large number of
individuals with CNN.

Training of CNN. Optimization
problems are generated for
generalization of CNN.

Optimization with CNN for wide
class of motors and problems.

Optimization phaseTraining phase
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Optimization of IPM motor

56
.0

28
.0

27
.5

8.0

u+

v-

v-

w+
w+

u-

Unit:[mm]

coil

Permanent Magnet

Gaussian Function

Design region

Current phase angle [degree] 30

Current effective value [A] 4.2425

Number of turns [turn] 35

Residual flux density [T] 1.25

T0 = 2.08 Nm 
T0

rip = 0.57

[4] Technical report of the institute of electrical engineering of Japan,” Industry application society, No. 776, 2000.
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Optimization Problem

max.0 →=
T
T

F 2area <NSub.to.

T: Average torque
T0: Average torque of original model
Narea: The number of separated rotor cores

The number of genes 42
The number of individuals 800

The number of children 160

Optimization setting 
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CNN
Torque

Classifier
Bit map showing material distribution

(224 × 224)

■: Iron ■: Permanent magnetic ■: Copper □: Air 

8 classes

CNN
Torque Ripple

Classifier
Bit map showing material distribution

(224 × 224)

8 classes

4,000

10,000

Training of CNN for
classification of torque and torque ripple

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted
to IEEE Trans. Magn.
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Classification of torque and torque ripple

Classification of 
Torque

CNN FEM
1.1 1.05~
1.0 0.95~1.05
0.9 0.85~0.95
0.8 0.75~0.85
0.7 0.65~0.75
0.6 0.55~0.65
0.5 0.45~0.55
0.0 ~0.45

Classification of 
Ripple

CNN FEM
0.6 ~0.65
0.7 0.65~0.75
0.8 0.75~0.85
0.9 0.85~0.95
1.0 0.95~1.05
1.1 1.05~1.15
1.2 1.15~1.25
1.3 1.25~

better

worse
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0 0.5 0.6 0.7 0.8 0.9 1 1.1 TOTAL

0 513 46 10 6 2 7 0 0 584

0.5 18 397 75 1 0 0 0 0 491

0.6 0 83 392 79 0 0 0 0 554

0.7 0 1 73 462 39 1 0 0 576

0.8 0 0 0 32 377 29 0 0 438

0.9 0 0 0 6 40 463 28 0 537

1 0 0 0 0 0 21 368 26 415

1.1 0 0 0 0 0 0 10 395 405

TOTAL 531 527 550 586 458 521 406 421 4000

Label by CNN 

La
be

l b
y 

FE
M

𝑇𝑇� a
ve

 F
EM

 

𝑇𝑇�ave CNN 

48

Accuracy in torque

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted
to IEEE Trans. Magn.
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CNN: 0.50 FEM: 0.50

CNN: 0.70 FEM: 0.70

CNN: 0.90 FEM: 0.90

CNN: 1.10 FEM: 1.09

Examples
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0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 TOTAL

0.6 797 246 36 1 11 10 12 19 1132

0.7 169 631 164 99 20 33 21 29 1166

0.8 21 200 858 128 37 24 16 18 1302

0.9 7 114 139 812 122 136 41 12 1383

1 8 27 44 148 821 125 61 15 1249

1.1 5 36 29 115 108 850 250 27 1420

1.2 9 20 37 38 64 295 575 107 1145

1.3 21 19 32 26 33 36 240 796 1203

TOTAL 1037 1293 1339 1367 1216 1509 1216 1023 10000

Label by CNN 

La
be

l b
y 

FE
M

𝑇𝑇�rip CNN 

𝑇𝑇� r
ip

 F
EM
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Torque ripple

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted
to IEEE Trans. Magn.
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0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 TOTAL

0.6 797 246 36 1 11 10 12 19 1132

0.7 169 631 164 99 20 33 21 29 1166

0.8 21 200 858 128 37 24 16 18 1302

0.9 7 114 139 812 122 136 41 12 1383

1 8 27 44 148 821 125 61 15 1249

1.1 5 36 29 115 108 850 250 27 1420

1.2 9 20 37 38 64 295 575 107 1145

1.3 21 19 32 26 33 36 240 796 1203

TOTAL 1037 1293 1339 1367 1216 1509 1216 1023 10000

Label by CNN 

La
be

l b
y 

FE
M

𝑇𝑇�rip CNN 

𝑇𝑇� r
ip

 F
EM
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Relationship between evaluation value by CNN and FEM

Torque ripple
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Coevolution in biology
Wiki: In biology, coevolution occurs when two or 
more species reciprocally affect each other's evolution.

https://en.wikipedia.org/wiki/Species
https://en.wikipedia.org/wiki/Evolution
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Toward Coevolution of DL and TO

Training of CNN
with richer data

Topology optimization
with faster speed

Training data

Fitness evaluation
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Building a Strong Classifier with DL

CNN Topology
optimization

Generator of
Optimization Problem
For generalization of CNN

data

accuracy problem
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Conclusions
Topology optimization leads to new design to various electric and
electronic apparatus as well as other mechanical and chemical
Systems.

Deep learning is promising to reduce the computational cost of
Topology optimization.

Topology optimization and deep learning can make coevolution.
Using the topology optimization, we would be able to realize
a strong classifier with generality of electric motors as well as
other devices.
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